Synthesen mit Nitrilen, 26. Mitt.:

Die Amin-HCN-Austauschreaktion am 2-Dicyanmethylen-1,3-indandion*

\mathbf{Von}

H. Aigner, H. Junek und H. Sterk

Aus dem Institut für Organische Chemie der Universität Graz

(Eingegangen am 20. Oktober 1969)

Die Umsetzung von 2-Dieyanmethylen-1,3-indandion mit Diäthylamin führt unter Abspaltung von HCN zum 2-(Diäthylamin-cyanmethylen)-1,3-indandion. Durch NMR-Spektroskopie bei tiefen Temperaturen kann ein instabiles Zwischenprodukt mit Ladungstrennung nachgewiesen werden.

Syntheses Starting with Nitriles, XXVI: Substitution of Cyano Groups in 2-Dicyanomethylene-1,3-indandione by Amino Groups

The reaction of 2-dicyanomethylen-1,3-indandione with diethylamine leads to 2-(diethylamino-cyanomethylene)-1,3-indandione, while HCN is eliminated. By NMR-spectroscopy at low temperature it can be shown that an instable intermediate with charge separation is formed.

2-Dicyanmethylen-1,3-indandion (1) ist nach Chatterjee¹, bzw. Junek und Sterk² leicht zugänglich und steht sowohl strukturell als auch in seinem reaktiven Verhalten dem Tetracyanäthylen ($TC\ddot{A}$) außerordentlich nahe. In der vorliegenden Arbeit wird über die Reaktion von 1 mit Diäthylamin berichtet.

 $TC\ddot{A}$ reagiert mit prim. und sek. Aminen sowie mit den meisten prim. aromatischen Aminen unter Bildung von N-Tricyanvinylaminen³. Bei sek. und tert. aromatischen Aminen erfolgt eine Umsetzung mit $TC\ddot{A}$ unter Tricyanvinylierung des Kernes. McKusick et al.³ geben dafür keinen Reaktionsmechanismus an, jedoch sind reaktionskinetische Untersuchungen in

^{*} Auf Wunsch der Autoren erscheint die Abhandlung erst im vorliegenden Heft (Red.).

¹ S. Chatterjee, Science [Wash.] **157**, 314 (1967).

² H. Junek und H. Sterk, Tetrahedron Letters 40, 4309 (1968).

³ B. C. McKusick, R. E. Heckert, T. L. Cairns, D. D. Coffman und H. F. Mower, J. Amer. Chem. Soc. 80, 2806 (1958).

der Literatur beschrieben $^{4-8}$. Der erste Teilschritt, die Bildung eines chargetransfer-Komplexes ist experimentell gesichert, $Isaacs^9$ konnte die Übergangsenergien von 42 arom. Aminen mit TCA zum π -Komplex vermessen. Über die Struktur des σ -Komplexes, der im zweiten Reaktionsschritt gebildet wird, herrscht bisher keine Übereinstimmung, obwohl es bereits gelungen ist, Zwischenprodukte zu isolieren $^{7, 8}$. Während zwitterionische Formeln von $Rappoport^5$ und $Farell^7$ angegeben werden, sind Additionsprodukte ohne Ladungstrennung ebenfalls diskutiert worden $(Rappoport^8, Kosower^6)$.

Bei der Umsetzung von 2-Dieyanmethylen-1,3-indandion (1) mit Diäthylamin findet tatsächlich analog wie beim TCA Austausch einer Nitrilgruppe gegen den Rest des eingesetzten Amins statt und es wird unter Freisetzung von HCN das 2-(Diäthylamino-cyanmethylen)-1,3-indandion (2) erhalten. Der nukleophile Angriff des Amins an die durch vier elektronenanziehende Gruppen (zwei Nitrile und zwei Carbonyle) ausgezeichnete Doppelbindung in 1 führt zur Bildung eines Adduktes, für welches die Struktur 1a bzw. 1b in Frage kommt. Die Stabilisierung erfolgt durch Abspaltung von HCN, wobei dann als Endprodukt 2 erhalten wird.

Von $Bjerrum^{10}$ wurde für Addukte von Basen an Lewissäuren (\rightleftharpoons Antibasen) der Begriff Anbadon im Sinne von Antibasen—Basen-Donator

⁴ Z. Rappoport, J. Chem. Soc. [London] **1963**, 4498.

⁵ Z. Rappoport und A. Horowitz, J. Chem. Soc. [London] 1964, 1348.

⁶ E. M. Kosower, Progr. Physic. Org. Chem. 3, 81 (1965).

⁷ P. G. Farell, J. Newton und R. F. M. White, J. Chem. Soc. [London] **B 1967**, 637.

⁸ Z. Rappoport und E. Shohamy, J. Chem. Soc. [London] B 1969, 77.

⁹ N. S. Isaacs, J. Chem. Soc. [London] **B 1966**, 1053.

¹⁰ J. Bjerrum, Angew. Chem. **63**, 527 (1951).

geprägt, der sich jedoch in der Literatur nicht durchsetzen konnte, da Bor—Stickstoff-Anbadone lange Zeit die einzigen Vertreter dieser Körperklasse waren. Schon vor einiger Zeit berichteten Horner und Klüpfel¹¹ sowie Rappoport und Gertler¹² über die Isolierung von Reaktionsprodukten organischer Phosphorverbindungen mit Arylidenmalonitrilen. Margaretha und Polansky¹³ ist es kürzlich gelungen, Anbadone aus Aminen darzustellen.

Im geschilderten Reaktionsverlauf stellt die Zwischenstufe 1a ein Anbadon dar und zu seinem Nachweis ist die Kernresonanzspektroskopie des Gemisches der Ausgangsprodukte 1 und Diäthylamin bei tiefen Temperaturen herangezogen worden. Bei -30° ergeben die Ringprotonen von 1 ein Singulett bei δ 7,62, wie es für das Indan-1,3-dion gefunden wird (s. auch Varian NMR-Spectra Catalog No. 224). Bereits bei -20° erscheint ein neues Signal, welches um etwa 6 Hz zu höherem Feld verschoben ist. Bei $+10^{\circ}$ zeigt der Peak für $\mathrm{H_A}$ auch Kopplungen zu anderen Ringprotonen ($J\sim3~\mathrm{Hz}$), und bei $+30^{\circ}$ ist die Intensitätsverteilung etwa 3:1. Schon wenige Minuten nach Erreichen der Betriebstemperatur des Gerätes ($=38^{\circ}$) ist das Signal von $\mathrm{H_A}$ wieder verschwunden und es verbleibt das Singulett bei δ 7,62 (4 H). Die beiden Äthylgruppen bilden ein Triplett bei δ 1,38 (6 H) und ein Quartett bei δ 4,0 (4 H).

Diese Ergebnisse bestätigen den angegebenen Reaktionsmechanismus. Bei -20° beginnt sich das Anbadon 1a zu bilden, wobei eine Carbonylgruppe des Dicyanmethylenindandions (1) negativiert wird. Dadurch kommt Proton H_A in einen Bereich größerer Abschirmung und erscheint bei höherem Feld. Mit steigender Temperatur geht das Anbadon unter Ladungsausgleich und Prototropie in 1b über, worauf unter Austritt von HCN das Endprodukt 2 erreicht wird, da hier das freie Elektronenpaar des Aminstickstoffs durch die Konjugation mit einer C=C- und einer C=O-Doppelbindung eine Erweiterung des mesomeren Systems und damit eine Stabilisierung ergibt.

Über die Umsetzung weiterer aliphatischer und aromatischer Ämine mit Dicyanmethylen-indandionen wird in Kürze getrennt berichtet werden.

Experimenteller Teil

1. Angaben zu den NMR-Aufnahmen

10proz. Lösungen von 2-Dicyanmethylen-1,3-indandion und Diäthylamin in Aceton-d₆ werden frisch bereitet, zu gleichen Teilen gemischt und 0,5 ml davon sofort in flüss. Stickstoff eingefroren, worauf die Messung erfolgt. Verwendet wurde ein Varian A 60 A-Gerät.

¹¹ L. Horner und K. Klüpfel, Ann. Chem. **591**, 69 (1955).

¹² Z. Rappoport und S. Gertler, J. Chem. Soc. [London] 1964, 1360.

¹³ P. Margaretha und O. E. Polansky, Mh. Chem. **100**, 576 (1969).

2. 2-(Diäthylamino-cyanmethylen)-1,3-indandion (2)

1 g 2-Dieyanmethylen-1,3-indandion wird in 20 ml THF gelöst und unter Rühren langsam 0,4 g Diäthylamin zugegeben. Nach 24 Stdn. bringt man die rote Lösung zur Trockne; der Rückstand wird aus verd. Äthanol umkristallisiert (Ausb. 0,6 g). Hellgelbe Nadeln, Schmp. 104° .

IR-Spektrum in KBr: 2220 K —CN, 1700 K C=O, 730 K o-subst. Aromat.